Topological Risk Analysis and Criticality Mapping
in the npm Supply Chain

Yusuf Talha ARABACI
Department of Software Engineering
Karabuk University
Karabuk, Turkey
yusuftalhaarabaci @hotmail.com

Abstract—While centralized package managers like npm have
revolutionized the speed of software development, they have
inadvertently introduced a profound systemic fragility. Hidden
beneath the surface of modular efficiency lies a complex, nested
web of dependencies where a single failure can trigger a cas-
cading collapse. Traditional security models, often myopic in
their focus on code-level vulnerabilities, frequently overlook the
structural risks inherent in this topology. This study introduces
the Behavioral Risk Score (BRS), a novel, topology-first metric
designed to map systemic risk independent of a package’s code
content. By modeling the npm ecosystem’s functional backbone
as a directed graph of 1,844 structurally critical packages, we
uncover a scale-free architecture where risk isn’t distributed
evenly, but rather concentrates dangerously in a small core of
”bridge” nodes. Validating our model against the 2025 ”’Shai-
Hulud” attacks, we demonstrate that BRS successfully flagged
high-risk vectors like es—abstract and debug well before
they were compromised. Our robustness simulations are equally
stark: the targeted removal of these high-BRS nodes triggers
a catastrophe, wiping out over 40% of network accessibility in
the initial phase. We argue, therefore, that the future of supply
chain security lies not in broader scanning, but in the targeted
fortification of this topological backbone.

Index Terms—Software supply chain security, npm, depen-
dency network analysis, topological risk, cascade effect.

I. INTRODUCTION

Contemporary software engineering is now inseparable from
the convenience of centralized package managers like npm,
PyPI, and RubyGems [1], [2]. Yet, this modular convenience
comes at a steep price: we are building on a foundation that is
structurally fragile. A single compromised library, no matter
how trivial, can now ripple through the entire ecosystem with
devastating speed [1]. The npm registry, with its millions of
packages, presents an attack surface so vast it is virtually
impossible to defend in its entirety [3]. The danger is further
amplified by the uncontrolled propagation of vulnerabilities
[4], [5] and the wild inconsistency in how packages are
maintained [6]-[8]. Research consistently points to a ’small-
world” phenomenon within npm—a reality where a handful
of packages wield a clear, disproportionate influence over the
rest [9]-[12].

The spectrum of supply chain attacks has evolved from sim-
ple compromises to sophisticated strategies like “typosquat-
ting” [13]. Modern threats include source poisoning [14],
prototype pollution [15], and highly specific Node.js depen-
dency attacks [16]. Seminal studies such as “Backstabber’s

Knife Collection” [13] and “The Hitchhiker’s Guide” [17] have
dissected the anatomy of these attacks, while Duan et al. [2]
have documented hundreds of malicious packages lurking at
the registry level.

Current defensive strategies typically employ machine learn-
ing [18], [19], metadata analysis [20], and signature-based
detection [24]-[26]. However, the sheer scale of the ecosys-
tem renders comprehensive, deep scanning computationally
unsustainable. Moreover, existing risk models tend to focus
heavily on maintenance status [6] or known vulnerabilities
[4], often neglecting the systemic collapse risks—or cascade
effects—inherent in the network’s topology itself. Critical
“bridge” packages, which may be unpopular but are topolog-
ically vital, remain unprotected structural holes.

This study aims to map these systemic risks by analyzing
the topological architecture and global prevalence of packages
within the npm ecosystem. We construct a directed graph
to calculate key structural metrics, including in-degree, out-
degree, betweenness, and the inverted clustering coefficient.
To prioritize critical nodes effectively, we developed the Be-
havioral Risk Score (BRS), a weighted composite metric.
We validate this model through cascade effect simulations
and Largest Connected Component (LCC) robustness analyses,
ultimately aiming to protect the ecosystem by identifying and
securing its load-bearing columns.

II. METHODOLOGY
A. Data Collection and Sampling Strategy

Given the immense scale of the npm ecosystem (exceeding
3.5 million packages), we adopted a targeted sampling strategy
to isolate the network’s “functional backbone.” We extracted
data from the Ecosyste.ms database focusing on two distinct
categories:

o Infrastructural Backbone: The top 1,000 packages by
dependents, representing the foundation other packages
build upon.

o End-User Popularity: The top 1,000 packages by down-
loads, representing direct usage by developers.

Merging these lists gave us a seed set of 1,452 unique pack-
ages. We then expanded our view by traversing dependencies
down to a depth of seven. After carefully pruning circular
references and isolated nodes, we arrived at a final directed

graph of 1,844 nodes and 3,814 edges. We consciously re-
stricted our analysis to this core subgraph for a simple reason:
this is where the structural risk lives. Mapping the long tail
of millions of leaf nodes yields diminishing returns when
the goal is to understand systemic collapse. The initial crawl
yielded 1,844 nodes. After filtering for the Giant Connected
Component (GCC) to ensure our reachability analysis was
valid, the final graph used for robustness simulations consisted
of 1,506 nodes.

B. Network Model and Centrality Metrics

To capture the structural essence of the ecosystem, we
modeled the dataset as a graph G = (V, E'), where nodes V'
represent packages and edges E represent dependencies. We
calculated four topological metrics using Python NetworkX:

1) Betweenness Centrality: This measures the frequency
with which a node appears on the shortest paths between
other nodes. It effectively quantifies a package’s role as
a “bridge” that controls the flow of information and risk
[27].

2) In-Degree: The count of direct dependents, serving as
an indicator of the direct impact radius [27].

3) Out-Degree: The count of external dependencies, rep-
resenting the package’s attack surface [29].

4) Inverted Clustering Coefficient: A measure of local
fragility. We utilize the inverse (1 — Clustering) because
low clustering implies a package fills a structural hole
with few alternative paths, increasing dependency rigid-
ity [28].

C. Behavioral Risk Score (BRS) Algorithm

Clarification: In this context, "Behavioral” refers strictly to
the structural behavior of nodes within the network topology
(e.g., acting as a bridge or bottleneck), rather than dynamic
runtime code execution.

To ensure fair comparison, we normalized heavy-tailed
metrics (Dependents, Downloads) using Logarithmic Normal-
ization:

, In(1 4 z) — min(In(1 + z))

T max(In(1l + z)) — min(In(1 + z)) 0

We then computed the Behavioral Risk Score (BRS) as a
weighted sum:

BRS = (0.35 x Betweenness') + (0.30 x InDegree’)
+ (0.15 x ClusteringInv’) + (0.10 x OutDegree”)

+ (0.05 x Dependents’) + (0.05 x Downloads’)

2
Justification of Weights: We assigned the highest weight
(0.35) to Betweenness Centrality based on empirically ob-
served attack patterns. Historical incidents, such as the
Shai-Hulud attack, demonstrate that threat actors actively
weaponize topological centrality. Bridge nodes serve as the
most efficient vectors for widespread propagation, warranting

their prioritization over simple popularity metrics (0.05).

D. Validation and Cascade Analysis

We tested the model’s validity through rigorous robustness
simulations. By sequentially removing high-BRS packages,
we measured the degradation of the Largest Connected Com-
ponent (LCC) and network accessibility (cascade effect) to
simulate a targeted supply chain collapse.

III. RESULTS AND DISCUSSION

A. Network Topology and Scale-Free Structure

TABLE I
NETWORK TOPOLOGICAL STATISTICS

Metric Value Interpretation

Nodes (GCC) 1,506 Active Backbone

Edges 3,814 Dependencies

Density 0.0011 Sparse Connectivity
Assortativity -0.1997 Hub-and-Spoke Structure
Avg. Clustering 0.0972 High Structural Holes

As illustrated in Figure 1, the npm ecosystem does not
exhibit a uniform mesh structure; rather, it displays a distinct
hierarchical architecture. The visualization highlights a core
set of ’hub’ nodes (depicted in red) that act as the structural
backbone of the ecosystem. The density of connections around
these central nodes confirms that the network relies heavily
on a limited number of ’bridge’ packages to maintain connec-
tivity, creating potential single points of failure (SPoF) that
adversaries can exploit to maximize propagation.

Fig 1: Network Topology Visualization (High-Degree Hubs Highlighted)

Fig. 1. Visualization of the npm dependency network topology. The size of
the red nodes corresponds to their BRS scores. The visualization reveals a
highly centralized, non-homogeneous architecture where a minority of “hub”
nodes form a dense backbone, while the majority of packages reside in the

periphery.

The statistical analysis of the network’s connectivity, pre-
sented in Figure 2, demonstrates that the in-degree distribution
follows a clear Power Law. This confirms that the npm ecosys-
tem is a scale-free network. Mathematically, this topology
explains the ’robust yet fragile’ paradox observed in supply
chains: the network is highly resilient to random failures
(as most nodes have few connections) but is exceptionally
vulnerable to targeted attacks against the high-degree hubs that
populate the ’long tail’ of the distribution.

Fig 2: In-Degree Distribution (Log-Log) - Evidence of Scale-Free Topology

3 ® Observed Data

10 °
~=- Power Law Fit (@ = 1.63)
I
~ °
~
~
~
~
SN
10° SN ®
oo
S
. ®
SN
< N
> o s
e @‘s\Q
g 10 ~
g A Y
- o e
oo
° @
© o0 @d. °
.
10° ® ame e o e o
T
S
~
SN
S
SS
N
~
~
~
~
10° 10" 10°
Degree (k)

Fig. 2. Log-Log plot of the In-Degree distribution. The linear fit confirms that
the network follows a Power Law distribution, providing empirical evidence
of a scale-free topology.

B. Correlation Analysis of Centrality Metrics

The heatmap in Figure 3 exposes a critical misalignment
between popularity and structural risk. While packages like
tslib are ubiquitous due to their high download counts
(indicated by lighter columns), they do not necessarily possess
the highest structural lethality. In contrast, packages such as
es—abstract exhibit a dark red intensity in the 'Between-
ness’ and "Out-Degree’ columns, indicating a role as a critical
structural bottleneck. This visual evidence supports the BRS
model’s premise: reliance solely on download metrics fails to
capture the hidden risks posed by ’bridge’ nodes that connect
disparate parts of the ecosystem.

Fig 3: Metric Contribution Heatmap (Top 20 Critical Packages)

es-abstract
@babel/helper-plugin-utils
@babellpreset-env

tslib

@babelltraverse

workbox-build

@babel/core

@jesticore

o
>

Normalized Value (0-1)

get-intrinsic

jest-snapshot

Package

call-bind

@jesttypes

-04
debug

@babelltypes

postcss-preset-env
@smithy/types
call-bound

postcss-value-parser

@types/node

browserslist

Risk Components

Fig. 3. Metric contribution heatmap for the top 20 critical packages. The
heatmap reveals a non-linear relationship between global popularity (Down-
loads/Dependents) and structural risk (Betweenness/Out-Degree), highlighting
the discrepancy between perceived popularity and actual topological criticality.

C. Analysis of Critical Nodes and BRS Rankings

The BRS model successfully identifies the ecosystem’s
structural backbone. Figure 4 displays the top 20 high-risk
packages. The ranking highlights that packages with high
“bridge” potential often outrank those with simple popularity.

Notably, es—abstract (0.69) outranks the most popular
package tslib (0.47). Its combination of high external
dependencies (Out-Degree: 54) and bridge role (Betweenness:
0.0006) marks it as a prime target for transitive dependency
attacks.

TABLE II
ToP 5 CRITICAL PACKAGES ACCORDING TO BRS MODEL AND KEY RISK

FACTORS

Rank Package Name BRS Score Key Risk Factor

1 es-abstract 0.6893 High Out-Degree & Bridge Role

2 @babel/helper-plugin-utils 0.5413 High In-Degree (Hub Role)

3 @babel/preset-env 0.4901 High Out-Degree (Attack Surface)

4 tslib 0.4749 High Popularity (Hub Role)

5 @babel/traverse 0.4220 Balanced Structural Risk

Fig 4: Top 20 Packages by Behavioral Risk Score (BRS)
—]

@smithyltypes

Package Name

call-bound
postcss-value-parser
@typesinode
browserslist

0.0 0.1 0.2 0.5 06 0.7

03 0.4
Behavioral Risk Score (BRS)

Fig. 4. Top 20 Packages with the Highest Behavioral Risk Score (BRS).
These packages represent the most critical points of failure in the network.

D. Structural Robustness and Cascade Effect

We validated network robustness via “targeted” and “ran-
dom” attack simulations (Figure 5). Random node removal
results in a linear, manageable decline in LCC size, indicating
that the network is resilient against accidental failures. This
resilience is a hallmark of scale-free networks, where the
probability of randomly hitting a hub is low.

Fig 5: Cascade Impact Analysis (Targeted vs. Random)

—e— Targeted Attack (Top BRS)
=== Random Failure

1600 L e

-
-—
_—
—
1400 o~ —m.
o, -

o -
» \ il RO
g 1200 %, S
Sene
2 \ ~~~~~~ -
£ . Tl
2 1000 \ —
g
€
S
O 800
-
£
5
8
£ 600
§
o
g a0
e
L .
200 1\.
.

)

0 100 200 300 400 500
Number of Nodes Removed

Fig. 5. Network robustness analysis comparing Random Failure (Blue) vs.
Targeted BRS Attack (Red). The Y-axis represents the size of the Largest
Connected Component (LCC). The targeted removal of high-BRS nodes
triggers an exponential collapse in network integrity compared to the linear
degradation observed in random scenarios.

Conversely, targeting high-BRS packages triggers an expo-
nential collapse. Removing just 300 critical packages (~15%)
shatters the main backbone. The loss of the top 20 packages
alone causes a > 40% drop in network accessibility. This
mathematically confirms that BRS successfully identifies the
“load-bearing columns” whose failure precipitates systemic
collapse.

E. Topological Fragility and the Shai-Hulud Example

The ”Shai-Hulud” attack series (Fall 2025) provides com-

pelling empirical validation for our topological risk model.

o Wave 1 (Sept 2025): Attackers surgically targeted high-
betweenness “trusted” packages like es—abstract and
debug. Our BRS model had identified these as top
critical nodes prior to the attack.

o Wave 2 (Nov 2025): Dubbed "The Second Coming,” this
wave leveraged the compromised bridge nodes to self-
propagate to over 700 downstream packages.

The targeting of es-abstract and debug—identified as
top critical nodes by our BRS model—during the Shai-
Hulud incident empirically validates that high betweenness
centrality acts as a magnet for supply chain attacks. Attackers
weaponized the topology itself, turning the network’s trust
structure into a propagation vector.

F. Comparison with Current Methods

Traditional SAST/SCA tools focus on content vulnerability.
Our BRS model complements these by identifying high-impact
nodes before vulnerabilities exist. This prioritizes “manual
code review” and “pinning” for security teams overwhelmed
by thousands of dependencies.

G. The Efficiency vs. Security Paradox

The calculated disassortativity coefficient or Disassortative
Mixing” (-0.199) reveals a fundamental trade-off. The npm
ecosystem is highly efficient due to this disassortative struc-
ture, where low-degree nodes connect to high-degree hubs,
allowing for rapid traversal and code reuse. However, this
efficiency is the primary adversary of security. Our BRS model
demonstrates that this *structural efficiency’ effectively func-
tions as a ’security vulnerability’. The collapse of over
40% of the ecosystem’s accessibility upon the removal of a
small number of hub nodes indicates that robustness has been
sacrificed for the sake of efficiency.

IV. CONCLUSION

This study introduced the Behavioral Risk Score (BRS) as
a lens to view and quantify the systemic risks hidden within
the npm supply chain. By analyzing the 1,506-node backbone,
we have laid bare a startling reality: the security of the entire
ecosystem rests on the shoulders of a surprisingly small cadre
of “bridge” packages. Our cascade analysis, bolstered by the
empirical lessons of the Shai-Hulud incident, confirms that
these nodes are not just dependencies—they are single points
of failure. If they fall, the network falls with them.

A. Limitations

This study utilizes static analysis of package . json man-
ifests. While effective for architectural mapping, it does not
capture dynamic/runtime dependencies (e.g., eval () calls) or
shadowed dependencies. Therefore, our BRS scores represent
a baseline structural risk, which could be augmented by
dynamic analysis in future works. Furthermore, it represents
a temporal snapshot of the ecosystem and does not address
issues related to license compliance [32].

B. Future Work

Future work will focus on integrating Dynamic Analysis
to detect runtime anomalies and expanding the BRS model
to cross-ecosystem dependencies (e.g., measuring how PyPI
risks propagate to npm via binding libraries). Additionally,
we plan to scale the analysis to the entire npm registry,
moving beyond the targeted backbone to map and score the
full dependency graph of over 3.5 million packages.

C. Reproducibility

To foster further research and transparency, all source code
and datasets generated in this study are made available:

¢ Analysis Code: analysis/analysis.ipynb
o Data Qutputs: results/ directory

REFERENCES

[11 E. Wyss, “A new frontier for software security: Diving deep into npm,”
2025.
[2] R. Duan et al., “Towards measuring supply chain attacks on package
managers,” in NDSS, 2020.
[3] M. Wang, P. Wu, and Q. Luo, “Construction of software supply chain
threat portrait based on chain perspective,” 2023.
[4] C. Liu et al., “Demystifying vulnerability propagation via dependency
trees in npm,” in ICSE, 2022.
[5] A. Zerouali et al., “On the impact of security vulnerabilities in the npm
and RubyGems dependency networks,” 2022.
[6] I. Rahman et al., “Characterizing dependency update practice of NPM,
PyPI and Cargo packages,” 2024.
[7]1 F. R. Cogo, “Studying dependency maintenance practices through min-
ing NPM,” 2020.
[8] A.J. Jafari et al., “Dependency practices for vulnerability mitigation,”
2023.
[9] M. Zimmermann et al., “Small world with high risks: Security threats
in npm,” in USENIX Sec., 2019.
[10] A. Hafner, A. Mur, and J. Bernard, “Node package manager’s depen-
dency network robustness,” 2021.
[11] E.-R. Oldnall, “The web of dependencies: A complex network analysis
of the NPM,” 2017.
[12] P. Jaisri, B. Reid, and R. G. Kula, “A preliminary study on self-contained
libraries in the NPM ecosystem,” 2024.
[13] M. Ohm et al., “Backstabber’s knife collection: A review of open source
software supply chain attacks,” in DIMVA, 2020.
[14] T. G. Hastings, “Combating source poisoning and next-generation soft-
ware supply chain attacks,” 2024.
[15] M. Shcherbakov, P. Moosbrugger, and M. Balliu, “Unveiling the invisi-
ble: Prototype pollution gadgets via dynamic taint,” 2021.
[16] D.Y. K. Yip, “Empirical study on dependency-based attacks in Node.js,”
2022.
[17] P. Ladisa et al., “The hitchhiker’s guide to malicious third-party depen-
dencies,” in IEEE S&P, 2023.
[18] A. Sejfia and M. Schafer, “Practical automated detection of malicious
npm packages (Amalfi),” in /CSE, 2022.
[19] X. Zheng et al., “Towards robust detection of OSS supply chain
poisoning (OSCAR),” 2024.
[20] S. Halder et al., “Malicious package detection using metadata informa-
tion,” 2024.
[21] J. Zhang et al., “Malicious package detection in NPM and PyPI using
a single model of malicious behavior sequence,” 2023.
[22] P. Ladisa et al., “On the feasibility of cross-language detection of
malicious packages in npm and PyPI,” 2023.
[23] N. Imtiaz, “Toward secure use of open source dependencies,” 2023.
[24] M. L. P. Correia, “Detection of software supply chain attacks in code
repositories,” 2022.
[25] M. Ohm et al., “Supporting detection via unsupervised signature gener-
ation (ACME),” 2021.
[26] T. R. Schorlemmer, “Software supply chain security: Attacks, defenses,
and signing adoption,” 2024.
[27] L. C. Freeman, “Centrality in social networks conceptual clarification,”
Social Networks, vol. 1, no. 3, pp. 215-239, 1978.

(28]
[29]
[30]
[31]

(32]

D. J. Watts and S. H. Strogatz, “Collective dynamics of ’small-world’
networks,” Nature, vol. 393, no. 6684, pp. 440442, 1998.

M. E. J. Newman, Networks: An Introduction. Oxford University Press,
2010.

S. Torres-Arias, “In-toto: Practical software supply chain security,” in
USENIX Sec., 2020.

S. Yu, “Accurate and efficient SBOM generation for software supply
chain security,” 2024.

K. Ahlstrom, “Dependency analysis for software licensing and security
risk mitigation,” 2025.

